skip to main content


Search for: All records

Creators/Authors contains: "Fleming, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigated the state of the arc background mantle (i.e. mantle wedge without slab component) by means of olivine CaO and its Cr-spinel inclusions in a series of high-Mg# volcanic rocks from the Quaternary Trans-Mexican Volcanic Belt. Olivine CaO was paired with the Cr# [molar Cr/(Cr + Al) *100] of Cr-spinel inclusions, and 337 olivine+Cr-spinel pairs were obtained from 33 calc-alkaline, high-K and OIB-type arc front volcanic rocks, and three monogenetic rear-arc basalts that lack subduction signatures. Olivine+Cr-spinels display coherent elemental and He–O isotopic systematics that contrast with the compositional diversity of the bulk rocks. All arc front olivines have low CaO (0.135 ± 0.029 wt %) relative to rear-arc olivines which have the higher CaO (0.248 ± 0.028 wt %) of olivines from mid-ocean ridge basalts. Olivine 3He/4He–δ18O isotope systematics confirm that the olivine+Cr-spinels are not, or negligibly, affected by crustal basement contamination, and thus preserve compositional characteristics of primary arc magmas. Variations in melt H2O contents in the arc front series and the decoupling of olivine CaO and Ni are inconsistent with controls on the olivine CaO by melt water and/or secondary mantle pyroxenites. Instead, we propose that low olivine CaO reflects the typical low melt CaO of high-Mg# arc magmas erupting through thick crust. We interpret the inverse correlation of olivine CaO and Cr-spinel Cr# over a broad range of Cr# (~10–70) as co-variations of CaO, Al and Cr of their (near) primary host melts, which derived from a mantle that has been variably depleted by slab-flux driven serial melt extraction. Our results obviate the need for advecting depleted residual mantle from rear- and back-arc region, but do not upset the larger underlying global variations of melt CaO high-Mg# arc magmas worldwide, despite leading to considerable regional variations of melt CaO at the arc front of the Trans-Mexican Volcanic Belt.

     
    more » « less
  2. Models of subduction zone magmatism ascribe the andesitic composition of arc magmas to crustal processes, such as crustal assimilation and/or fractional crystallization, that basaltic mantle melts experience during their ascent through the upper plate crust. However, results from time series study of olivine-phyric high-Nb basalts and basaltic andesites from two monogenetic arc volcanoes (V. Chichinautzin and Texcal Flow) that are constructed on the ~45 km thick continental basement of the central Transmexican Volcanic Belt (TMVB) are inconsistent with this model. Instead, ratios of radiogenic isotope and incompatible trace elements suggest that these volcanoes were constructed through multiple individual melt batches ascending from a progressively changing mantle source. Moreover, the high Ni contents of the olivine phenocrysts, together with their high mantle-like 3He/4Heoliv =7-8 Ra with high crustal δ18O oliv = +5.5 to +6.5‰ (n=12) point to the presence of secondary ‘reaction pyroxenites’ in the mantle source that create primary silicic arc magmas through melt-rock reaction processes in the mantle [1, 2] . Here we present additional trace element concentration of the high-Ni olivines by electron microprobe (Mn, Ca) and laser-ablation ICPMS (Li, Cr and V) analysis in order to test this model. Olivine Li (2-7 ppm) and Mn (1170- 2810 ppm) increase with decreasing fosterite (Fo89 to Fo75), while Cr (29-364 ppm), V (4-11 ppm) and Ca (825-2390 ppm) decrease. Quantitative modeling shows that these trends in their entirety cannot be controlled by fractional crystallization under variable melt water H2O or oxygen fugacity (fO2), or co-crystallization of Cr-spinel. Instead, the variations support the existence of compositionally distinct melt batches during earliest melt evolution. Moreover, the trace element trends are qualitatively consistent with a model of progressive source depletion by serial melting (shown in olivine Ca, V and Cr) that is triggered by the repetitive addition of silicic slab components (shown by olivine Li). These findings suggest mantle source variations are not eliminated despite the thick crust these magmas pass during ascent. [1] Straub et al. (2013) J Petrol 54 (4): 665-701; [2] Straub et al. (2015) Geochim Cosmochim Acta 166: 29-52. 
    more » « less